ADR-0030: Software and OS Update Strategy
Status
Proposed
Context
As the Qubinode Navigator project evolves, it must handle continuous updates across multiple dimensions:
Update Challenges
- New Operating Systems: RHEL 11, Ubuntu LTS versions, new CentOS Stream releases
- Software Version Updates: Ansible core updates, Python version changes, container runtime updates
- Collection Dependencies: Updates to
qubinode_kvmhost_setup_collectionand other Ansible Galaxy collections - Security Patches: Critical vulnerabilities requiring immediate updates across the stack
- Plugin Ecosystem: New plugins, plugin updates, and plugin compatibility management
- AI Model Updates: New language models, improved inference engines, updated training data
Current Limitations
- Manual Update Process: No systematic approach for handling new OS or software versions
- Fragmented Testing: Updates tested in isolation without comprehensive integration validation
- Documentation Lag: Documentation updates lag behind software changes
- Compatibility Risks: New versions may break existing deployments without proper validation
The plugin framework (ADR-0028) and AI assistant (ADR-0027) provide opportunities for automated update detection, validation, and deployment.
Decision
Implement a comprehensive, automated update strategy that leverages the plugin architecture and AI assistant to handle software and OS updates systematically:
1. Automated Update Detection System
class UpdateDetector:
def detect_updates(self) -> List[UpdateCandidate]:
"""Detect available updates across all components"""
return [
self.check_os_updates(), # New OS versions
self.check_software_updates(), # Ansible, Python, etc.
self.check_collection_updates(), # Galaxy collections
self.check_plugin_updates(), # Plugin ecosystem
self.check_security_updates(), # CVE patches
self.check_ai_model_updates() # AI models and training data
]
2. Compatibility Matrix Management
# compatibility-matrix.yml
compatibility:
rhel:
"10":
python: ["3.12", "3.13"]
ansible_core: ["2.18.1+"]
collections:
qubinode_kvmhost_setup: ">=2.1.0"
"11":
python: ["3.13", "3.14"]
ansible_core: ["2.20.0+"]
status: "testing"
plugins:
ai_assistant:
compatible_models: ["granite-4.0-micro", "granite-5.0-micro"]
min_memory: "4GB"
collections:
qubinode_kvmhost_setup:
"2.1.0":
os_support: ["rhel-9", "rhel-10", "rocky-9"]
breaking_changes: ["dnf_modularity_removed"]
3. Staged Update Pipeline
Update Pipeline Stages:
1. Detection → Automated scanning for new versions
2. Compatibility → Check against compatibility matrix
3. Testing → Automated testing in isolated environments
4. Validation → Integration testing across OS matrix
5. Staging → Deploy to staging environment
6. Production → Controlled rollout with rollback capability
4. Plugin-Based Update Management
class UpdatePlugin(QubiNodePlugin):
def detect_os_updates(self) -> List[OSUpdate]:
"""Detect new OS versions and compatibility"""
pass
def validate_compatibility(self, update: Update) -> ValidationResult:
"""Check update against compatibility matrix"""
pass
def create_test_environment(self, update: Update) -> TestEnvironment:
"""Create isolated test environment for validation"""
pass
def execute_update(self, update: Update) -> UpdateResult:
"""Execute update with rollback capability"""
pass
5. AI-Assisted Update Management
class AIUpdateAssistant:
def analyze_update_impact(self, update: Update) -> ImpactAnalysis:
"""AI analysis of update impact and risks"""
pass
def generate_update_plan(self, updates: List[Update]) -> UpdatePlan:
"""Generate optimal update sequence and timing"""
pass
def provide_update_guidance(self, user_context: Context) -> Guidance:
"""Interactive guidance for update decisions"""
pass
Consequences
Positive
- Proactive Updates: Automatic detection and notification of available updates
- Risk Mitigation: Comprehensive testing before production deployment
- Compatibility Assurance: Matrix-based validation prevents breaking changes
- Automated Testing: Reduces manual effort and human error in update validation
- AI Guidance: Intelligent recommendations for update timing and sequencing
- Rollback Safety: Automated rollback capability for failed updates
- Documentation Sync: Automatic documentation updates with software changes
Negative
- Infrastructure Complexity: Requires sophisticated testing and staging infrastructure
- Initial Setup Effort: Significant work to establish compatibility matrices and test automation
- Resource Requirements: Additional compute resources for testing environments
- Maintenance Overhead: Compatibility matrix and test suites require ongoing maintenance
Risks
- False Positives: Automated detection may flag non-critical updates as urgent
- Test Environment Drift: Test environments may not perfectly match production
- Update Conflicts: Multiple simultaneous updates may have unexpected interactions
- AI Accuracy: AI recommendations may be incorrect for edge cases
Implementation Strategy
Phase 1: Update Detection and Compatibility (Weeks 1-4)
- Implement automated update detection for OS, software, and collections
- Create initial compatibility matrix for current supported platforms
- Build compatibility validation framework
- Establish update notification system
Phase 2: Automated Testing Infrastructure (Weeks 5-8)
- Create isolated test environments for each OS/software combination
- Implement automated test suites for update validation
- Build integration testing across plugin ecosystem
- Establish performance and security validation
Phase 3: AI Integration and Guidance (Weeks 9-12)
- Integrate update detection with AI assistant
- Implement AI-powered impact analysis and recommendations
- Create interactive update planning and guidance
- Build learning system from update outcomes
Phase 4: Production Pipeline (Weeks 13-16)
- Implement staged rollout pipeline with approval gates
- Create automated rollback mechanisms
- Establish monitoring and alerting for update issues
- Build reporting and analytics for update success rates
Update Scenarios and Responses
New Operating System Release (e.g., RHEL 11)
Scenario: RHEL 11 Beta Released
Response:
1. Detection: Automated scan identifies RHEL 11 availability
2. Analysis: AI assistant analyzes breaking changes and compatibility
3. Planning: Create RHEL 11 plugin development roadmap
4. Testing: Establish RHEL 11 test environment
5. Development: Update/create RHEL 11 plugin
6. Validation: Comprehensive testing across plugin ecosystem
7. Documentation: Update compatibility matrix and user guides
8. Release: Staged rollout with user notification
Critical Security Update (e.g., Ansible CVE)
Scenario: Critical Ansible Core Vulnerability
Response:
1. Detection: Security scanner identifies CVE
2. Impact: AI analysis of affected deployments
3. Priority: Automatic escalation for critical vulnerabilities
4. Testing: Expedited testing in staging environments
5. Deployment: Emergency update pipeline with accelerated approval
6. Notification: Immediate user notification with guidance
7. Monitoring: Enhanced monitoring for update-related issues
Collection Update (e.g., New Galaxy Release)
Scenario: qubinode_kvmhost_setup_collection v3.0.0
Response:
1. Detection: Galaxy API monitoring identifies new version
2. Compatibility: Check against current OS support matrix
3. Testing: Automated testing with existing Navigator versions
4. Integration: Update requirements.yml and test integration
5. Documentation: Update deployment guides and examples
6. Release: Coordinated release with collection update
Automation Framework
Update Detection Service
class UpdateService:
def __init__(self):
self.detectors = [
OSUpdateDetector(),
SoftwareUpdateDetector(),
CollectionUpdateDetector(),
SecurityUpdateDetector(),
PluginUpdateDetector()
]
def scan_for_updates(self) -> UpdateReport:
"""Comprehensive update scanning"""
updates = []
for detector in self.detectors:
updates.extend(detector.detect())
return UpdateReport(
updates=updates,
compatibility_analysis=self.analyze_compatibility(updates),
recommendations=self.ai_assistant.generate_recommendations(updates)
)
Compatibility Validation
class CompatibilityValidator:
def validate_update(self, update: Update) -> ValidationResult:
"""Validate update against compatibility matrix"""
matrix = self.load_compatibility_matrix()
conflicts = self.check_conflicts(update, matrix)
dependencies = self.check_dependencies(update, matrix)
breaking_changes = self.check_breaking_changes(update, matrix)
return ValidationResult(
compatible=len(conflicts) == 0,
conflicts=conflicts,
dependencies=dependencies,
breaking_changes=breaking_changes,
recommendations=self.generate_recommendations(update)
)
Success Metrics
Update Velocity
- Detection Time: Time from release to detection (target: <24 hours)
- Validation Time: Time from detection to validation completion (target: <72 hours)
- Deployment Time: Time from validation to production deployment (target: <1 week)
Quality Metrics
- Update Success Rate: Percentage of updates deployed without rollback (target: >95%)
- Compatibility Accuracy: Accuracy of compatibility predictions (target: >98%)
- Security Response Time: Time to deploy critical security updates (target: <48 hours)
User Experience
- Update Notification Relevance: User satisfaction with update notifications
- Guidance Effectiveness: Success rate of AI-guided updates
- Documentation Currency: Percentage of documentation updated within 1 week of software changes
Related ADRs
- ADR-0026: RHEL 10/CentOS 10 Platform Support Strategy (OS update example)
- ADR-0027: CPU-Based AI Deployment Assistant Architecture (AI guidance integration)
- ADR-0028: Modular Plugin Framework for Extensibility (plugin update management)
- ADR-0029: Documentation Strategy and Website Modernization (documentation sync)
Date
2025-11-07
Stakeholders
- Platform Engineering Team
- DevOps Team
- Security Team
- QA Team
- AI/ML Team
- Community Contributors