ADR-0030: Software and OS Update Strategy

Status

Proposed

Context

As the Qubinode Navigator project evolves, it must handle continuous updates across multiple dimensions:

Update Challenges

  • New Operating Systems: RHEL 11, Ubuntu LTS versions, new CentOS Stream releases
  • Software Version Updates: Ansible core updates, Python version changes, container runtime updates
  • Collection Dependencies: Updates to qubinode_kvmhost_setup_collection and other Ansible Galaxy collections
  • Security Patches: Critical vulnerabilities requiring immediate updates across the stack
  • Plugin Ecosystem: New plugins, plugin updates, and plugin compatibility management
  • AI Model Updates: New language models, improved inference engines, updated training data

Current Limitations

  • Manual Update Process: No systematic approach for handling new OS or software versions
  • Fragmented Testing: Updates tested in isolation without comprehensive integration validation
  • Documentation Lag: Documentation updates lag behind software changes
  • Compatibility Risks: New versions may break existing deployments without proper validation

The plugin framework (ADR-0028) and AI assistant (ADR-0027) provide opportunities for automated update detection, validation, and deployment.

Decision

Implement a comprehensive, automated update strategy that leverages the plugin architecture and AI assistant to handle software and OS updates systematically:

1. Automated Update Detection System

class UpdateDetector:
    def detect_updates(self) -> List[UpdateCandidate]:
        """Detect available updates across all components"""
        return [
            self.check_os_updates(),           # New OS versions
            self.check_software_updates(),     # Ansible, Python, etc.
            self.check_collection_updates(),   # Galaxy collections
            self.check_plugin_updates(),       # Plugin ecosystem
            self.check_security_updates(),     # CVE patches
            self.check_ai_model_updates()      # AI models and training data
        ]

2. Compatibility Matrix Management

# compatibility-matrix.yml
compatibility:
  rhel:
    "10": 
      python: ["3.12", "3.13"]
      ansible_core: ["2.18.1+"]
      collections:
        qubinode_kvmhost_setup: ">=2.1.0"
    "11":
      python: ["3.13", "3.14"]
      ansible_core: ["2.20.0+"]
      status: "testing"
      
  plugins:
    ai_assistant:
      compatible_models: ["granite-4.0-micro", "granite-5.0-micro"]
      min_memory: "4GB"
      
  collections:
    qubinode_kvmhost_setup:
      "2.1.0":
        os_support: ["rhel-9", "rhel-10", "rocky-9"]
        breaking_changes: ["dnf_modularity_removed"]

3. Staged Update Pipeline

Update Pipeline Stages:
1. Detection → Automated scanning for new versions
2. Compatibility → Check against compatibility matrix  
3. Testing → Automated testing in isolated environments
4. Validation → Integration testing across OS matrix
5. Staging → Deploy to staging environment
6. Production → Controlled rollout with rollback capability

4. Plugin-Based Update Management

class UpdatePlugin(QubiNodePlugin):
    def detect_os_updates(self) -> List[OSUpdate]:
        """Detect new OS versions and compatibility"""
        pass
        
    def validate_compatibility(self, update: Update) -> ValidationResult:
        """Check update against compatibility matrix"""
        pass
        
    def create_test_environment(self, update: Update) -> TestEnvironment:
        """Create isolated test environment for validation"""
        pass
        
    def execute_update(self, update: Update) -> UpdateResult:
        """Execute update with rollback capability"""
        pass

5. AI-Assisted Update Management

class AIUpdateAssistant:
    def analyze_update_impact(self, update: Update) -> ImpactAnalysis:
        """AI analysis of update impact and risks"""
        pass
        
    def generate_update_plan(self, updates: List[Update]) -> UpdatePlan:
        """Generate optimal update sequence and timing"""
        pass
        
    def provide_update_guidance(self, user_context: Context) -> Guidance:
        """Interactive guidance for update decisions"""
        pass

Consequences

Positive

  • Proactive Updates: Automatic detection and notification of available updates
  • Risk Mitigation: Comprehensive testing before production deployment
  • Compatibility Assurance: Matrix-based validation prevents breaking changes
  • Automated Testing: Reduces manual effort and human error in update validation
  • AI Guidance: Intelligent recommendations for update timing and sequencing
  • Rollback Safety: Automated rollback capability for failed updates
  • Documentation Sync: Automatic documentation updates with software changes

Negative

  • Infrastructure Complexity: Requires sophisticated testing and staging infrastructure
  • Initial Setup Effort: Significant work to establish compatibility matrices and test automation
  • Resource Requirements: Additional compute resources for testing environments
  • Maintenance Overhead: Compatibility matrix and test suites require ongoing maintenance

Risks

  • False Positives: Automated detection may flag non-critical updates as urgent
  • Test Environment Drift: Test environments may not perfectly match production
  • Update Conflicts: Multiple simultaneous updates may have unexpected interactions
  • AI Accuracy: AI recommendations may be incorrect for edge cases

Implementation Strategy

Phase 1: Update Detection and Compatibility (Weeks 1-4)

  • Implement automated update detection for OS, software, and collections
  • Create initial compatibility matrix for current supported platforms
  • Build compatibility validation framework
  • Establish update notification system

Phase 2: Automated Testing Infrastructure (Weeks 5-8)

  • Create isolated test environments for each OS/software combination
  • Implement automated test suites for update validation
  • Build integration testing across plugin ecosystem
  • Establish performance and security validation

Phase 3: AI Integration and Guidance (Weeks 9-12)

  • Integrate update detection with AI assistant
  • Implement AI-powered impact analysis and recommendations
  • Create interactive update planning and guidance
  • Build learning system from update outcomes

Phase 4: Production Pipeline (Weeks 13-16)

  • Implement staged rollout pipeline with approval gates
  • Create automated rollback mechanisms
  • Establish monitoring and alerting for update issues
  • Build reporting and analytics for update success rates

Update Scenarios and Responses

New Operating System Release (e.g., RHEL 11)

Scenario: RHEL 11 Beta Released
Response:
  1. Detection: Automated scan identifies RHEL 11 availability
  2. Analysis: AI assistant analyzes breaking changes and compatibility
  3. Planning: Create RHEL 11 plugin development roadmap
  4. Testing: Establish RHEL 11 test environment
  5. Development: Update/create RHEL 11 plugin
  6. Validation: Comprehensive testing across plugin ecosystem
  7. Documentation: Update compatibility matrix and user guides
  8. Release: Staged rollout with user notification

Critical Security Update (e.g., Ansible CVE)

Scenario: Critical Ansible Core Vulnerability
Response:
  1. Detection: Security scanner identifies CVE
  2. Impact: AI analysis of affected deployments
  3. Priority: Automatic escalation for critical vulnerabilities
  4. Testing: Expedited testing in staging environments
  5. Deployment: Emergency update pipeline with accelerated approval
  6. Notification: Immediate user notification with guidance
  7. Monitoring: Enhanced monitoring for update-related issues

Collection Update (e.g., New Galaxy Release)

Scenario: qubinode_kvmhost_setup_collection v3.0.0
Response:
  1. Detection: Galaxy API monitoring identifies new version
  2. Compatibility: Check against current OS support matrix
  3. Testing: Automated testing with existing Navigator versions
  4. Integration: Update requirements.yml and test integration
  5. Documentation: Update deployment guides and examples
  6. Release: Coordinated release with collection update

Automation Framework

Update Detection Service

class UpdateService:
    def __init__(self):
        self.detectors = [
            OSUpdateDetector(),
            SoftwareUpdateDetector(), 
            CollectionUpdateDetector(),
            SecurityUpdateDetector(),
            PluginUpdateDetector()
        ]
        
    def scan_for_updates(self) -> UpdateReport:
        """Comprehensive update scanning"""
        updates = []
        for detector in self.detectors:
            updates.extend(detector.detect())
            
        return UpdateReport(
            updates=updates,
            compatibility_analysis=self.analyze_compatibility(updates),
            recommendations=self.ai_assistant.generate_recommendations(updates)
        )

Compatibility Validation

class CompatibilityValidator:
    def validate_update(self, update: Update) -> ValidationResult:
        """Validate update against compatibility matrix"""
        matrix = self.load_compatibility_matrix()
        
        conflicts = self.check_conflicts(update, matrix)
        dependencies = self.check_dependencies(update, matrix)
        breaking_changes = self.check_breaking_changes(update, matrix)
        
        return ValidationResult(
            compatible=len(conflicts) == 0,
            conflicts=conflicts,
            dependencies=dependencies,
            breaking_changes=breaking_changes,
            recommendations=self.generate_recommendations(update)
        )

Success Metrics

Update Velocity

  • Detection Time: Time from release to detection (target: <24 hours)
  • Validation Time: Time from detection to validation completion (target: <72 hours)
  • Deployment Time: Time from validation to production deployment (target: <1 week)

Quality Metrics

  • Update Success Rate: Percentage of updates deployed without rollback (target: >95%)
  • Compatibility Accuracy: Accuracy of compatibility predictions (target: >98%)
  • Security Response Time: Time to deploy critical security updates (target: <48 hours)

User Experience

  • Update Notification Relevance: User satisfaction with update notifications
  • Guidance Effectiveness: Success rate of AI-guided updates
  • Documentation Currency: Percentage of documentation updated within 1 week of software changes
  • ADR-0026: RHEL 10/CentOS 10 Platform Support Strategy (OS update example)
  • ADR-0027: CPU-Based AI Deployment Assistant Architecture (AI guidance integration)
  • ADR-0028: Modular Plugin Framework for Extensibility (plugin update management)
  • ADR-0029: Documentation Strategy and Website Modernization (documentation sync)

Date

2025-11-07

Stakeholders

  • Platform Engineering Team
  • DevOps Team
  • Security Team
  • QA Team
  • AI/ML Team
  • Community Contributors